
Development of an UltraNet Based Distributed Visualization

Application

John Krystynak*

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035

A bst tact

The example application is a distributed visualiza-
tion involving a supercomputer and a graphics work-
station. The visualization computation is performed

on a Connection Machine, _,nd the results are rendered

using a Silicon Graphics a orkstation. The UItraNet
network installed at NAS allows high-bandwidth com-

munication between the computers. Ideally, taking ad-
vantage of the UItraNet is n _ more complex than devel-

oping TCP/IP and Unix B:¢D socket-type applications
on a single machine. In oractice, there are several

problems in developing an _pplication using the Ultra-
Net. This paper identifies potential problems and dis-

cusses techniques for overcoming them. Performance

of UItraNet communication is measured and found to

be 10 MB/sec for SGI VGX workstations.

1 Introduction

This paper examines th_ issues in creating an U1-
traNet TCP/IP socket-bas,_d distributed application.
In order to preserve as much generality as possible, the
discussion is focused on the UltraNet-related aspects

of the development process. This paper provides:

• An explanation of the UltraNet.

• A summary of the socket model used in UltraNet
communications.

• The steps in the development of a distributed ap-

plication.

• A performance survey of the UltraNet.

The potential for effective distributed applications
at the Numerical Aerodyn _mic Simulation (NAS) fa-

cility of NASA Ames Research Center grew with the

*Work Supported by NASA Contract NAS 2-12961

installation of the UltraNet. The UltraNet is a hub-

based network. The NAS installation currently con-

sists of nine hubs connected with fiber optic cables,

forming a ring which supports 1 Gigabit/sec transfer
rates between the hubs. The hubs connect to over 80

workstations, supercomputers and other nodes with

various types of interfaces and cable connections.

The UltraNet software allows existing socket-based

communications applications to be relinked and run on
UltraNet with a minimum of programming effort. Af-

ter a socket-based program is relinked, however, there
are still several ways to enhance performance, reliabil-

ity and programmability.

Using a distributed visualization application as an
example, this paper examines application design and

implementation on the workstation and supercom-
puter sides, division of work between the machines
and other issues. Specific details of the rendering and

graphics algorithms in the example application are not
emphasized except where they are relevant to the use
of the UltraNet.

Distributed graphics applications involving a su-

percomputer, workstation and high-speed network are
rapidly becoming an important tool for visualization

[3, 4, 5, 6]. Computation is done on the supercom-
puter, and visualization can be done over the network,

with the displays generated on a workstation. This
type of distributed graphics application matches the

right tools for the right tasks. Supercomputers have
the memory and speed to solve the simulation and

generate the data to be visualized. Graphics work-
stations have better tools for developing visualization
software and their cost and size allow a researcher to

have one on her desk.

UltraNet performance varies widely depending on
the hardware and software using the network. The ef-
fective transfer rate of data over the UltraNet depends

primarily on the slowest node involved. With a VME
based interface on the SGI workstations, one may ex-

SERVER CLIENT

socket

bind

listen

socket

accept

Table 1: Server/Client Model: Steps in establishing a

socket connection.

pect five to 10 megabytes/see (MB/sec). Timings to

support this expectation are presented in the section

on performance.

2 Basic UltraNet Behavior

The UltraNet and the device drivers that support it

rely on a UNIX device model to send and receive data.

UltraNet connections behave like raw devices. Data is

moved directly from or to the application memory by

Direct Memory Access hardware (DMA) or by inter-

rupt level processing. Hardware 'packet size' is trans-

parent to users. The UltraNet can write whatever

size buffer you wish to send, up to system-dependent

limits. Currently, the largest SGI/VME write that

succeeds is about 3.6 megabytes.

The model of file I/O is a good approximation of

UltraNet behavior. In UNIX, the system calls read,

write, open and close are provided to allow users

to handle files. Although a file system may have some

atomic size, users generally do not care what that size

is. Sockets use the same system calls that file I/O

uses: read, write, etc. More specifically, UltraNet

sockets are stream facilities which provide full-duplex

communication paths between user's processes and the

kernel's interactions with the network hardware.

The speed of delivery of a read or write depends

on the speed of the machines involved. The 'weakest

link in the chain,' in terms of I/O throughput, will

determine the overall speed of the transfer. Data is

read directly to and from memory. A VME interface

(e.g., SGI VGX, Convex) to the UltraNet is slower

than an HiPPI interface (e.g., CM-2)

3 The Socket Model

The sockets in the example application are handled

in a client/server model. One process listens for re-

quests for connections and makes the connection when

necessary ('server'). The other process ('client') asks

for a connection from some server. When the client

gets the connection, both server and client can read

and write to the socket. The client must know the

machine address and port number of the server to be

able to connect. The socket library calls which estab-

lish a server and client connection are shown in Table

1. Note that the server must have completed the first

three steps before the client does a socket call or the

connection will fail.

The UltraNet socket compatibility library supports

most of the UNIX socket calls. Some minor variations

listed below are not currently supported:

• sendmsg, recvmesg

• shutdown

• listen(s, n) where n > 1

• send and receive are not interruptible

TCP/IP style connections should be used in most

applications, since they are a reliable connection-

oriented protocol, as opposed to connectionless UDP

datagram protocols. UDP does not provide error con-

trol, flow control or sequencing. Several UNIX books

give examples of UDP style sockets, which are not gen-

erally useful for applications sending large amounts of

data. For more detail on sockets and TCP/IP, see [8].

When using an SGI with UltraNet, it is necessary

to link with the ulsock library. The ulsock library

provides socket calls that work with UltraNet. A few

important differences arise when using the ulsock li-

brary. The ulsock library replaces the dup2 function

from C with its own drip2. A potential conflict ex-

ists with the mpc parallel programming library, which

also replaces dup2. For UltraNet linked programs

which use both ulsock and mpc, place -lulsock be-

fore -lmpc on the compile command line (i.e., ensure

that your program uses the UltraNet dup2).

To use the UltraNet, it is necessary to attach to the

host address of the UltraNet interface. Machines with

UltraNet interfaces have internet addresses dedicated

to an UltraNet native path, an UltraNet internet pro-

tocol path and a general internet protocol path. Table

2 shows typical NAS names of addresses on a given

network. It is easy to switch between the networks

by changing addresses of server connections. The per-

formance discussion of this paper deals only with the

native UltraNet addresses (i.e., hostnames in the form

host-u).

HOSTNAME NETWOII K

host

host-uip

host-u

Ethernet addresses

UltraNet internet protocol address

Native UltraNet address

Table 2: Example NAS Ilostnames and their Networks

for UltraNet Hosts. Native UltraNet is generally the

fastest; Ethernet is slowest.

4 The Distributed Application:

A Case Study

The production of a working UltraNet application

is not extremely complex; lowever, network reliabil-

ity and access to network r,;sources limits how devel-

opment takes place. The epplication examined here

involves the Connection Mochine (CM), and a Silicon

Graphics VGX (SGI). The Connection Machine side

requires use of the Connection Machine ttigh Perfor-

mance Parallel Interface (CM-IIiPPI) processor, the

CM DataVault, the CM fiont-end and at least one

Sequencer on the CM itself. The SGI side of the

application involves an SGI VGX running two pro-

cesses accessing shared memory buffers governed by

semaphores. Both sides depend ell the UltraNet.

The sum of the parts forms a working UltraNet ap-

plication, but it is easier 1o debug and develop the

individual parts of the appication separate from one

another. The amount of hardware involved in the full

application limits developing and debugging. If the

network or the DataVauit or the CM is not up, the

full application cannot run Separate development of

parts allows work to proceed even when all the hard-

ware elements are not available. As an example, the

SGI side can operate with data coming from another

process (on the same machine or from another work-

station) over the Ethernet. The SGI side can also op-

erate without the graphics process. For testing con-

nections from the CM, a :dInpler socket program is

used which can isolate network problems and bench-

mark network response.

Some other development obstacles include: avail-

ability of CM time, access _,o SGI VGX graphics con-

sole, CM-tIiPPI and UltraNet hardware problems. A

list of the major steps in the development process

shows how the application progressed.

1. Developed client/ser':er procedures between

SGIs.

2. Ported client to CM.

3. Developed single proc(ss SGI application.

I UltraNeL Name

AF_INET

socket

read

struct sockaddr

perror

CMFS Name

CMFS_AF_INET

CMFS_socket

CMFS_r ead_f ile_alway s

struct cm_sockaddr

CMFS_perror

Table 3: CMFS Socket Library Name differences

4. Wrote multiple process SGI producer/consumer.

5. Fused producer/consumer with sockets on SGI.

6. Wrote serial process to simulate CM for debug-

ging.

7. Incorporated CM side.

8. Integrated and tested full application.

All conmmnication is based on procedures written

in Step 1. The code for these routines is given in Ap-

pendix A. The two major procedures are server()

and client(). The client routine takes a hostname

as an argument and attempts to connect over a pre-

viously agreed upon port number to the server. The

port number can be defined in an include file visible

to both server and client processes.

Once the basic communication routines are de-

bugged, it is possible to test UltraNet throughput.

These tests are discussed below. It is also relatively

easy to port these communication routines to the

Connection Machine, since Thinking Machines pro-

vides analogous library calls in their CM File System

(CMFS) library [9]. The major difference is in the

naming. Some examples are shown in Table 3. The

emolient() source code is included in Appendix B.

Both the client and server codes in the appendices are

based on examples in [8].

4.1 Partitioning the Application

Partitioning the work of a distributed application

is an important design decision which affects the per-

formance and utility of the application. The nature

of the application, along with the relative speeds of

the computers and networks involved determine how

partitioning of work should be done. Several possibil-

ities in dividing the work for interactive visualization

applications have been explored [3, 5].

One technique is to do both simulation and render-

ing computations on one or more supercomputers and

display the results on a workstation. This approach al-

locates heavy computation to the supercomputer and

Graphics

I
Figure 1: Basic architecture of distributed applica-
tion. The CM communicates data via the CM-ItiPPI

to the UltraNet Hub. The SGI has a process devoted

to reading buffers from the Hub into Shared memory.
Another SGI process handles rendering and user in-
terface.

relegates the workstation to displaying precomputed
bitmap images. Sending a full screen color bitmap to

the workstation may require an extremely fast net-
work to support animation. This model of partition-

ing is analogous to the model the X windows system
uses for distributing graphics. This type of partition-
ing is useful for computationally expensive rendering
problems such as volume visualization, where super-

computers can process the image much faster than a
workstation can.

The partitioning for the example application was

designed to allow the workstation to handle rendering
and user interaction. The amount of data sent to the
workstation over the network is small. The Connec-

tion Machine calculates new data positions, then sends
3-D coordinates of the positions to the workstation for

rendering. The workstation handles interaction with
the user, rotation, scaling and lighting of the visual-

ization. Figure 1 illustrates the basic architecture of
the application.

It is important to balance the amount of network

traffic and the computation requirements on the work-
station and CM to get acceptable throughput. The
CM-ttiPPI is also more efficient with buffer sizes

greater than 256KB (or 4 32-bit floating point val-
ues on each processor of 1 sequencer). One drawback
of this behavior is that at transfer sizes where the

CM-HiPPI and UltraNet are most efficient, the overall

transfer time can be rather long. If one communicates
in buffers of 2MB or more from the CM to an SGI,

each transfer takes around 0.5 secs to complete. This

is too slow for many graphics applications, so soft-
ware buffering may be considered to amortize the cost
of data transfers.

For the case where a small amount of data needs

to be sent relatively often, similar problems arise. As

shown in the performance section below, sending less
than 256KB of data is non-optimal because ofstartup

cost in buffer communication, so packaging data to
be sent into larger buffers may give better UltraNet

throughput. The delay time in waiting for enough
data to send may not be acceptable for interactive

applications. Another alternative is to use Ether-
net for small buffers. These tactics are application-

dependent, because the amount of buffering that will

help depends on the ratio of computation speed to net-
work speed and to workstation rendering speed. The
performance section of this paper gives timings which

may help developers predict what type of buffering is
most appropriate for specific applications.

4.2 Workstation Application Architec-
ture

Since the example application requires the SGI to

render 3-D graphics while also reading UltraNet data
into memory, a multiple process architecture was used.

A producer/consumer scheme is used for efficiency.
The producer is the process which reads data from the
UltraNet. The producer tries to have data ready for
the consumer at all times. The consumer 'consumes'

this data when it needs to update the screen. Reading

data from the UltraNet continuously with one proces-
sol while rendering previously read buffers allows the

application to be more interactive. This tactic is one of
the suggestions in the UltraNet Network Applications

Development guide [10], and is especially productive
on multiple processor machines such as the VGX.

The producer/consumer code and the networking
and rendering code are independent units which were
integrated into one unit after they were debugged. To

simplify development, the producer/consumer proto-

type was based on an SGI documentation example [7],
which gave insight into how the producer/consumer

shared memory code would work. A second prototype
was a single process which did two tasks: read the net-

work data and render data. Later, this prototype was

integratedinto the twoprocessproducer/consumer
codewithoutmajorproblens.Figure 1showsthe
SGIsectionoftheapplicaticnastwoprocessessharing
memory.ThewholeSGIse:tionin Figure1iscom-
prisedoftheintegratedpro:,otypesdescribedabove.

Theserialrenderingandnetworkingcodeandthe
non-networkedtwoprocessproducer/consumerwere
combinedwithrelativeeas_,becausetheyhadbeen
independentlydebuggedandtheirbehaviorwaswell
defined.Thebasicsoftwa_'eengineeringpremiseof
prototypingsmallmodulestobeincorporatedintothe
largerarchitectureaftertheyhavebeentestedguided
theapplication'sdevelopm._nt.It was necessary to

proceed according to this :_remise because many of

the hardware and software ,:omponents were new and

somewhat unreliable. In otter words, guessing at how
to integrate a large numb,Jr of unfamiliar concepts
would not have worked.

When using shared memory and two processes with
UltraNet sockets, it is important that the processes'

critical sections are handled correctly. If the control
threads are not handled correctly, the reads and writes
to the UltraNet will not ma_ch up and a form of dead-

lock will persist. If UltraNe_ reads and writes are not

paired, both the processes and the port they use will
be severely hung 1 because there is no time-out mech-

anism. Modifying and testii_g the SGI example before

integrating network commu_fication code allowed vali-
dation of the multiple process code without the prob-
lems of process and networ_ deadlock.

4.3 Supercomputer Application Architec-
ture

The construction of the application for the Con-

nection Machine was analogous to the process on the
workstation. Figure 1 shows the CM-2 and the IIiPPI

as independent blocks through which data flows. Al-
though these are separate lardware units, they also

provide a model for the partitioning of the CM section
of the example application. Two modules were devel-

oped: a standalone particle tracing code (CM-2) and
a CMFS socket-based communication code (IIiPPI).
The particle code provides :;he data which the HiPPI

communicates to the UltraNet. The development of

the particle tracing code is not discussed in this pa-
per. The socket code, however, illustrates how the
UltraNet interface may be different from machine to
machine.

1This time-out problem was _.lleviated in the CMFS sockets
package, which greatly reduced the number of dead processes
and hung TCP ports during development.

The primary concerns when reading or writing
network data on the Connection Machine are paral-

lel/serial data format and byte-ordering. The Connec-
tion Machine stores a floating point number in paral-
lel format which must be transposed into serial for-

mat before sending. Likewise, incoming data must be

transposed from serial to parallel format before it is
useful to the CM. Furthermore, the Connection Ma-
chine has a little endian byte order, while the SGI

VGX has big endian byte order, which means bytes

must be swapped for data to be the same on the CM
and SGI. Byte swapping can be done quickly for large

amounts of data in parallel on the CM. The byte-

swapping transformation is given by:

ABCD -----*DCBA

If the byte swapping is done on the CM, it must be
done before the data is transposed to serial format.

Currently, the C_lFS_transpose_a3.ways call, which
does the transpose from serial to parallel or vice-versa,
is somewhat slow and hampers the effective perfor-
mance of transfers to and from the CM. Future soft-

ware releases should improve the performance of this

transpose.
The CM-tIiPPI handles UltraNet data for the CM.

The CM-IIiPPI is a Sun 4 which runs the socket server
daemon. The socket server handles all socket connec-

tions to and from the CM, so the socket server must be

running or the CM cannot access the UltraNet. When
the CM-IIiPPI was first installed there were several

problems with the socket server and the hardware in-
terfaces on the CM-tIiPPI. The reliability of the soft-

ware and hardware improved as bugs were found and
fixed by Thinking Machines. To continue development
when the CM-IIiPPI was down, a "CM simulator" was

written which ran on a VGX. This process simply read
pre-computed data from disk and connected to the

SGI process with UltraNet sockets.

5 UltraNet Performance

There are several factors which affect an applica-

tion's UltraNet throughput. Most influential is the
hardware interface to the UltraNet. The UltraNet

as configured at NAS supports 1 gigabit/sec transfer
rates between its hubs and 250 megabits/sec trans-

fers (about 32MB/sec) between nodes. As mentioned
above, the SGI VME interfaces and the CM-IIiPPI in-

terface do not provide 100% of this throughput. When
transferring data over the UltraNet, the slowest inter-

face sending or receiving data determines the maxi-
mum rate for the transfer. In the application discussed

in thispaper,theSGIVMEinterfaceisthebottleneck
in transferspeed.TheVMEinterfaceisthehardware
thataccessestheSGI'sbusandcommunicatesdatato
theUltraNethuboverfiber-opticconnections.

Givenafixedsetofhardware,thekeyparameters
whichaffectperformanceare:

1.Sizeofreads/writes.

2. Networktraffic.

3. Datapathfromhostto host.

Ofthese,thefirst-- read/writesize-- isbothuser
determinableandveryinfluentialinachievingoptimal
performance.Sinceusersongivenhostscannoteasily
changenetworktrafficor thedatapathofthetransfer,
thesefactorsarenotexamined.

5.1 SGI VME Interface Performance

TheUltraNetis connectedto severaldozenSGI's
at NAS.Theperformanceof theSGIandVMEIn-
terfaceto theUltraNetwill affectmanydistributed
applicationswrittenat NAS.A seriesof timingsof
transferrateswasconductedforreadandwritedirec-
tionsfromSGItoSGI.Testswerealsodoneonsingle
machinesina'loopback'manner.Theresultsofthese
benchmarksaswellasacomparisonof Ethernetand
UltraNettransferratesarepresentedin thefollowing
discussion.Timingsfor readsandtimingsfor writes
arenearlyequivalentsothatreadandwriteoperations
canbeconsideredequivalentin performance.These
timingsdemonstrate:

• Readingorwritingbufferssmallerthan256kilo-
bytes(KB) is inefficient,andsizesof 1 to 2
megabytesconsistentlygivebestperformancefor
theUltraNet.

• EthernetismoreefficientthanUltraNetforsmall
datatransfers.

• TheDMAon the SGIsaffectsperformanceof
largetransfers.

• ThelargestsizebuffertheSGIVMEinterfaces
reliablyacceptisabout3.6MB.

TheprocessorandI/O facilitiesof a 33MhzSGI
VGXcansupporttransferratesofatmost12MB/sec.
Figure2showsthatVMEto VMEtransferratesof
10-12MB/seccanbesustainedwhenbuffersizesare
largerthan256KB.Twomachinescommunicatingto
eachotheroverUltraNetcaneachsupportthisrate

xlO 6 SG[- SOl Transfer Rate of Vmrious Buffer S_z_

14_12 2M
j7

I0

i

32k

10 4 10 _ 10 6 10 7

Write Buffer Size (byles)

Figure 2: UltraNet transfers of 30 megabytes of data
from SGI VGX to SGI VGX on the same UltraNet

ttub. Points indicate size of buffer transferred, start-

ing with 32KB , ending at 2 megabytes.

due to the combination of their processor(s) speed and

the VME I/O performance. When two machines are
involved, each can devote its full I/O throughput to

reading or writing.

UltraNet is not as fast as Ethernet when transfer-

ring buffers smaller than 10KB. The overhead in us-

ing UltraNet is greater than Ethernet's overhead for
these small buffer sizes. Figure 3 demonstrates that
EtherNet is over twice as fast as UltraNet for buffer

sizes between 10 bytes and 5KB. Ethernet's maximum

speed is reached at 1KB. UltraNet betters Ethernet's
maximum speed at sizes above 10KB. If smM1 buffers

are being transferred over and over, Ethernet provides
better throughput. It is possible to have both types
of connections active at the same time. As an exam-

ple, one might send control information (e.g., mouse
position, visualization parameters) between two ma-
chines over Ethernet, while concurrently communicat-

ing data over UltraNet.

A 'loopback' test on a single machine shows that
UltraNet uses the VME interface, even when it is read-

ing and writing to local memory. Figure 4 shows that
writing from one process to another on the same ma-

chine limits the write speed to around 6 MB/sec. This
is due to the single VME interface doing both reads
and writes. The two machine SGI rates of 12 MB/sec

can only be achieved when a single VME I/O board

is devoted to handling a single connection.
The DMA hardware on the SGI influences the Ul-

traNet transfer rate. The DMA on the SGI does the

read or write from user memory to the UltraNet de-

Write Transfer Rat(for Small Buffers

1.4

1.2

0.1

0.6

/

/

/

Ethcmet

x

0.41

! UltraNcl o
0.2 [

10 o 10 _ 102 l01 104 IO_

Write Buffer Size (byms)

Figure 3: Transfers of 3 megabytes of data from SGI
VGX to SGI VGX over Etl'_ernet and UltraNet. Eth-

ernet is more than twice as fast as UltraNet for buffer
sizes smaller than 5KB. At hurler sizes of 10KB Ultra-

Net is as fast as Ethernet.

Local Transfer on SOl f ,r Various Buffer Sizcs

7! 2M

5!

: 32k

4!

i
0 _
104 l0 s 106 I0 _

Write Buffer Size (bytes)

Figure 4:30 megabytes transferred between two pro-
cesses on the same workstat on. Peak rates are limited

by one VME I/O channel handling reads and writes for
both processes simultaneol_sly. Compared to speeds

for two machine transfers, local transfers are about
half as fast.

vice. The performance of reads and writes may be
limited by the DMA if the DMA's address space fills

up with data from the read or write.
The nature of the DMA limitation is hard to

demonstrate with two machines because the sockets

will not handle buffers large enough to swamp the
DMA. Single machine loopback tests doing reads and
writes using a single DMA at the same time reveal a

performance limitation. "lYansfer rates suffer once the
combination of read and write buffers approaches a

certain size. Figure 5 shows for local buffer transfer

sizes greater than 2.5 MB there is a large drop-off in
buffers transferred per second at the 2.5 MB buffer
size.

Since two machines communicating have twice as

much DMA memory space as one machine, and one
machine encounters problems at 2.5MB, problems

may arise when sending buffers greater than 5MB be-
tween two machines. It is impossible to confirm this

hypothesis on two machines because the current U1-
traNet drivers for SGI will not complete 5MB trans-
fers between VME interfaces. Eventually, however,

the DMA limitation may prove problematic since the
UltraNet protocol specification does allow buffer sizes

up to 64MB to be sent.

These large buffer cases are not too worrisome for
many application developers, since sending this much

data (4MB or more) is too slow for interactive use and
is a large amount of data for a workstation to process.
For example, if an application needed to send 4MB per

frame for graphics, the UitraNet and VME interfaces

would be too slow to support animation frame rates.
The hardware design of the UltraNet VME board

also influences throughput, but very few specific de-
tails are available about the board's architecture. Ul-

traNet is a proprietary system, and documents ex-

plaining the interface board are not generally avail-
able.

UltraNet performance between various worksta-
tions, minisupercomputers and supercomputers was

measured by an Ultra Network Technologies employee
before the installation of the full UltraNet configura-

tion at NAS [2]. This work contains more detailed
explanation and analysis of performance for Sun, A1-
liant and Convex VME Interfaces, but does not cover

SGI performance.

5.2 CM to SGI Timings

The Connection Machine has an IIiPPI based inter-

face and two 32MB/sec I/O busses able to connect to
the UltraNet. Since the UltraNet supports 32MB/sec
sustained, while the CM supports at most 64MB/sec

10 _

Buffets Transferred per Second for Various Buffvr Sizes

l0 _

10 o

. ' 2 Machlr_ rcansfcr

Local transfvr _ _ - _ -_ -- _---- _'_\.

iO.i
0.5 I 1.5 2 2.5 3 3.5

Bytes per Buff_ xl0 6

Figure 5: Buffers per second transfer rate for SGI
between two machines and between two processes on
same machine. Two machines are about twice as fast
as local machine transfers for buffers smaller than 2.5

MB. Above 2.5 MB, two machine transfers are signif-

icantly faster.

(2 busses x 32MB/sec per bus), the maximum transfer
rate from the CM to any UltraNet connected device

is 32MB/sec. Transfer at these rates are theoretically

possible between the CM and the Cray. Becket and
Dagum investigated this type of connection for rela-

tively small transfers [1].

For applications involving workstations, the work-

station I/O will generally determine the transfer rate.
Figure 6 illustrates average throughput from CM to a
VGX. In these tests, conducted using CM system soft-
ware version 6.0, the SGI read 30 megabytes of data

from the CM in one megabyte chunks. The time to
byte-swap and convert from parallel CM representa-

tion to serial representation (both done on the CM)
is included in the timings. The timings show perfor-

mance under 10-12MB/sec for all sizes of writes. The

parallel to serial transpose is relatively slow, and limits
overall performance. In release 6.1 of the CM System
software, the efficiency of the parallel to serial trans-

pose should be much better and throughput should
therefore be closer to the SGI/VME maximum 10-

12MB/sec.

A transfer of a 32-bit floating point number from

each processor of one sequencer (8,192 processors) on
the CM contains a total of 32KB of data. This is

the minimum effective size the CM-ttiPPI can trans-

fer. This limitation may affect performance for codes
which need to transfer a smaller amount of data.

The CMFS sockets package is used when transferring

Transfer Rate from CM to SOl

12

10

8

6

,!. i

i

2

0
106 I0'

Bytes sent flora CM

IO s %

Figure 6: One Connection Machine sequencer writing
to SGI VGX over UltraNet. Mean, rnin and max of
10 tests at each size. VGX read buffer size is held

constant at one megabyte. Lowest rate is for 512 bytes
sent from each of 8,192 processors or a total of 4MB.

Highest rate is for 16k from each processor (128MB

total).

data from each processor to the UltraNet. Currently,

CMFS sockets are only compatible with the fieldwise
model of the CM. Using the UltraNet from any slice-

wise program will be highly inefficient until the soft-
ware directly supports the slicewise data layout. Fur-

ther investigation into CM-IIiPPI and CM to Ultra-

Net performance is being postponed until the more
efficient parallel to serial transpose software arrives,
since the transpose currently dominates other factors

in determining CM transfer rates.

6 Summary

Taking advantage of the UltraNet for distributed

applications is not a trivial task; however, it is be-
coming easier. This paper has examined the develop-

ment of one such application. This application demon-
strated that development for a relatively new network
and combination of computer architectures is made
easier when it is done piece by piece. Comprehension

of UltraNet behavior was gained by running simple
benchmarks. The communications primitives used for
these benchmarks were later modified to form the ba-

sis for the application's communication code. Later,
single process prototypes were modified to run in the
full networked, multiple process application. By iso-

lating and prototyping, software could be developed

evenwhenhardwarewasuravailable.
Themaximumthroughpt_toftheUltraNetdepends

onthehardwareattached,the SGIVGXcanutilize
10-12MB/secof UltraNetbandwidth.Thehardware
of theSGI/VMEinterfaceperformsaswellasother
workstations'interfacesbu_is limitingcomparedto
thespeedsof IIiPPIandsupercomputerUltraNetin-
terfaces.Furthermore,theDMAoftheSGIVGXmay
limit throughputwhenhaadlingbuffersizeslarger
than2.5MBononemachine,or 5MBbetweentwo
machines.It iseasytoada_.tcurrentsocketprograms
touseUltraNetsockets,althoughtoattainmaximum
throughput,devotingapro(esstonetworkhandlingis
agoodidea.

TheConnectionMachineis alsoeasilyaccessible
to andfromtheUltraNet.TheCMcalltakeadvan-
tageof greaterbandwidthto theUltraNet,because
it isnot limitedliketheworkstationsor theConvex
witha VMEinterface.CM-IIiPPIsoftwareis well-
designedbut currentlyhasseverallimitations:there
isnoslicewiseinterface,aslowtransposeisrequired,
andlanguagesupportis limited.ThinkingMachines
isworkingtoremedytheseproblems.

Thecurrentlevelof Ult-aNetperformanceishigh
enoughto supporta varietyof applications.Fora
givenapplication,makinggoodchoicesconcerning
howmuchdatatotransferandwhento transferdata
will improveapplicationthroughput.It mustbekept
in mindthatUltraNetandtherelatedpiecesarerel-
ativelynewandimmature.Undoubtedly,asUltraNet
matures,softwaretoolkitswill incorporatefeaturesto
makeitsusetransparentt¢,theprogrammer.

Acknowledgements

The author would like t_ thank Leo Dagum, Katy
Kislitzin and Pare Walatka for their many helpful com-

ments and suggestions.

References

[1] Becket, .]., Dagum, L., Distributed Particle Simu-
lation Using Heterogeneous Supercomputers, NAS

Technical Report RND-91-012, 1991.

[2] Clinger, M., Very High Speed Network Prototype
Development: Measurement of Effective Transfer
Rates, Report to NASA Ames Research Center,

October 25, 1989.

[3] Gerald-Yamasaki, M. J., Cooperative Visualiza-
tion of Computational Fluid Dynamics, RNR
Technical Report RND-91-011, March 1991.

[4] Malamud, C., The Top-Secret Virtual Chicken,
Communications Week, October 28, pg. 12, 1991.

[5] Robertson, D. W., Johnston, W.E., Tierney, B.
L., Loken, S. C., Jacobson, V. L., Theil, E.
II., Distributed Visualization Using Worksta-

tions, Supercomputers and High-Speed Networks,
Proceedings Visualization '91, October 22 - 25,

San Diego, CA, 1991.

[6] Schneider, M., Pittsburgh's Not-So-Odd Couple,
Supercomputing Review, Vol. 4, No. 8, pp. 36-38,
1991.

[7] Silicon Graphics Inc., Parallel Programming on
Silicon Graphics Computer Systems, Version 1.0,

Document # 007-0770-010 Mountain View, CA,
1989.

[8] Stevens, W.R., Unix Network Programming,
Chapter 6., Prentice-Ilall, Englewood Cliffs, N,I
1990

[9] Thinking Machines Corp., CM IfiPPI User's
Guide, Cambridge, MA, 1991.

[10] Ultra Network Technologies, Network Applica-
tions Development Guide, San Jose, CA, 1990.

10

